Partial differential equations

Problem. The vertical displacement g of a string when a wave is propagating through it is described by the equation

$$\frac{3^{2}y}{3x^{2}} = \frac{1}{c^{2}} \frac{3^{2}y}{3t^{2}}$$

where x is the horizontal position of the points belonging to the string, t is time and t is the propagation speed.

a) Verify that $y = f_1(x - ct)$ and $y = f_2(x + ct)$ are solutions to the wave PDE.

$$y = f_1(x \pm c \pm)$$

$$y = f_1(x \pm)$$

$$y = f$$

$$\Rightarrow \frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

$$\Rightarrow \frac{\partial^2 f(x \pm ct)}{\partial (x \pm ct)^2} = \frac{1}{c^2} \frac{\partial^2 f(x \pm ct)}{\partial (x \pm ct)^2}$$

b) Express f_1, f_2 in terms of the initial conditions $y = y_0(x)$, $\frac{2y}{2t} = V_0(x)$ both at t = 0.

The general solution is

therefore, at +=0 we have

$$y_{0}(x) = f_{1}(x) + f_{2}(x)$$

$$y_{0}(x) = -c f_{1}(x) + c f_{2}(x)$$
(1)

$$\frac{d}{dx}(1): y_0' = f_1' + f_2' \longrightarrow (2)$$

$$V_0 = -c(y_0' - f_2') + cf_2'$$

c) Find the general form of the wave solution for the initial condition V_0 (x) = 0 (this is an example of an initial condition onto a hyperbolic PDE in Cartesian coordinates)

$$y(x,t) = \frac{1}{2} [y_0(x-ct) + y_0(x+ct)]$$

Interpretation: for a string with an initial disturbance 2 (the actual shape doesn't matter), 1/2 of the produced wave propagates forwards (+x) and 1/2 propagates backwards (-x). string 3D sound time disturbance 1D Stice: Notice that to solve this second-order PDE we need two initial conditions (velocity and position, although the initial position is a free function in this general problem, we still need it for a concrete problem). Note that the fact that the functions are expressed as a function of χ^{\pm} means that this problem can be solved by the method of characteristics, with the characteristic speed **C** Problem. A string of variable density /(/) held at a variable tension 7(x) satisfies the PDE px 8, y = 0x (FOD 0x y) show that this equation is separable. This is an example of a hyperbolic PDE in Cartesian coordinates Let's assume g(x,t) = X(x) T(t) $\rho(x) \times (x) T'(t) = F(x) \times (x) T(t) + F(x) \times (x) T(t)$ × XwT(t) p(x) $\frac{T''(t)}{T(t)} = \frac{F'(x) X'(x)}{X(x) \rho(x)} + \frac{F(x) X''(x)}{X(x) \rho(x)} = \frac{1}{\cos x}$ Problem: solve the wave equation using separable variables for a constant propagation speed for a string held fixed (y = >) at x=0, x=1. This is a hyperbolic PDE in Cartesian coordinates with Dirichlet boundary conditions. c, 0, a = 0, a Assuming $y(x,t) = \chi(x)T(t)$ $c^2 \chi'' T = \chi T'' / \chi T$ $\Rightarrow c^2 \times 11 = T^1 = -2 : const \cdot to be determined.$ τ"+ x T = 0 $X'' + \frac{\lambda}{2}X = 0$

$$\begin{array}{c} X:\\ X=A \text{ sin } \left(\frac{x}{C} \times + \frac{x}{F}\right),\\ boundary cond. & \text{ sif } x=0, X=0\\ X(0)=A \text{ sin } \left(\frac{x}{C} \cdot 0 + \frac{x}{F}\right)=A \text{ sin } \frac{x}{F}=0\\ X(1)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(1)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(2)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(3)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(4)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(5)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(6)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0\\ X(7)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0$$

The temperature within the pipe and be modeled using the Laplace equation and the boundary conditions $U(7)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0$

The temperature within the pipe and the boundary conditions $U(7)=A \text{ sin } \left(\frac{x}{C} \cdot 1\right)=0$

The temperatur

This is an example of an elliptical PDE in cylindrical coordinates under Dirichlet boundary conditions.

in cylindrical coord., the laplace operator is
$$\nabla^2 u(r,z) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{\partial^2 u}{\partial z^2}$$

let v(r,z) = R(r) Z(z). Then,

$$\frac{Z}{r}\frac{d}{dr}\left(r\frac{dR}{dr}\right) + RZ'' = 0 \times \frac{1}{RZ}$$

$$\frac{1}{rR}\frac{d}{dr}\left(r\frac{dR}{dr}\right) = -\frac{Z''}{Z} = -\kappa^2 : const$$

Z:
$$Z'' = k^2 Z \Rightarrow Z(z) \in \{e^{-kz}\}$$
 because $Z(z \rightarrow \infty) \rightarrow 0$.
(the solution e^{+kz} doesn't satisfy the bound cond.)

$$\frac{\mathbf{R}}{r} \cdot \frac{1}{r} \cdot \frac{1}{dr} \cdot \frac{1}{dr} = -\kappa^{2} \cdot \frac{1}{r^{2}} \cdot \frac{1}{R}$$

$$\Rightarrow r \cdot \frac{1}{dr} \cdot \frac{1}{dr} \cdot \frac{1}{dr} \cdot \frac{1}{r^{2}} \cdot \frac{1}{R} = 0 : \text{ Bessel ODE (change of vir. } x = xr)$$

$$\Rightarrow R(r) \in \left\{ \int_{0}^{\infty} (Kr) \cdot \frac{1}{r^{2}} \cdot \frac{1}{r^{$$

 $\nabla^2 \cup Cr(\theta, \varphi) = 0$ Problem: the electrical potential can be computed with the Laplace equation in spherical coordinates $\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial}{\partial \theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial \theta^2}\right]\cup(r,\theta,\phi)=0$ Find all the base functions that form the general solution and compare against the simplest case of a point charge ($v \sim 1/r$) This is an example of an elliptical PDE in spherical coordinates. Ansatz: $\upsilon(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi)$ $\frac{\partial \Phi}{\partial r^2} \frac{1}{\partial r} \left(r^2 \frac{dR}{dr} \right) + \frac{R \Phi}{r^2 \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\theta}{d\theta} \right) + \frac{R \Phi}{r^2 \sin^2 \theta} \frac{d^2 \Phi}{d\phi^2} = 0$ $\frac{1}{R}\frac{d}{dr}\left(r^{2}dR\right) = -\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\theta}{d\theta}\right) - \frac{1}{\Phi \sin^{2}\theta}\frac{d\theta}{d\phi^{2}} = 2\left(\theta+1\right): const$ (to be det.) 1 d (r2 dR) = e(e+1) Let R = U/r => r2 U" = l(lf1) U -> U(r) & 3 -e, r2+1 } <u>Ø, ₫</u>: $\frac{1}{\oplus \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\theta}{d\theta} \right) + \frac{1}{\Phi \sin^2 \theta} \frac{d^2 \overline{\Phi}}{d\phi^2} = -\ell(\ell+1) \cdot \sin^2 \theta$ $\Rightarrow \frac{\sin\theta}{d\theta} \left(\sin\theta \frac{d\theta}{d\theta} \right) + \mathcal{Q} \left(\varrho + 1 \right) \sin^2\theta = -\frac{1}{\Phi} \frac{d^2\Phi}{d\theta^2} = m^2 : const$ (to be def.) $\Phi^{\parallel} + m^2 \Phi = 0 \longrightarrow \Phi(\varphi) \in \S e^{im\varphi}$ Φ . $sin\theta \frac{d}{d\theta} (sin\theta \frac{d\theta}{d\theta}) + (\ell(\ell + 1) sin^2\theta + m^2) \theta = 0$ <u>(H)</u>: $\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\theta}{d\theta} \right) + \left(e \left(e+1 \right) + \frac{m^2}{\sin^2\theta} \right) \theta = 0$ with the substitution $x = \cos\theta$ one can show this is the Associate Legendre ODE $\rightarrow \oplus (\theta) \in \S P_{\ell}^{m}(\cos \theta)$ The base functions 3 Pem (coso) etim & 3 form the spherical harmonics. The normalized, conventional spherical harmonics are written as $Y_{\ell m}(\theta, \varphi) = \sqrt{\frac{(\ell+1)}{4\pi}} \frac{(\ell-m)!}{(\ell+m)!} P_{\ell}^{m}(\cos \theta) e^{im\varphi}$ with Ye m = (-1) m Yem >

$$\int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin \theta d\theta \quad \overline{Y_{\ell'm'}}(\theta, \varphi) \quad Y_{\ell m}(\theta, \varphi) = S_{\ell' \ell} S_{m'm}$$

$$f(\theta, \varphi) = \underbrace{\sum_{\ell=0}^{\infty} \underbrace{F_{\ell} m}_{n=-\ell} Y_{\ell m}(\theta, \varphi)}_{\text{lem}}$$

with the coefficients
$$f_{em} = \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \theta \, d\theta \, \overline{Y}_{em} f(\theta, \phi)$$

which imply the relation

$$\sum_{\ell=0}^{9} \sum_{m=-\ell}^{2} Y_{em}(\theta', \rho') Y_{em}(\theta, \rho) = S(\cos\theta - \cos\theta') S(\varphi - \varphi')$$

when
$$f(\theta, \varphi) = 8(\cos \theta - \cos \theta') 8(\varphi - \varphi')$$
; used.

Problem: consider the diffusion equation

$$\frac{3T}{3+}$$
 - $\frac{3^2T}{3z^2}$ = 0

describing the time-dependent heat transfer within a medium, where 👂 is a constant.

Solve the equation with the boundary conditions

(Dirichlet boundary condition)
$$T(z=0) = 0$$

which means constant temperature of 0 at Z=D

(Neumann boundary condition)
$$\frac{dT}{dz}\Big|_{z=3} = -\alpha T\Big|_{z=3}$$

which means black-body radiation at Z= 3

This is an example of a parabolic PDE in Cartesian coordinates under Cauchy boundary conditions.

Ansatz:
$$T = f(t)g(z)$$

$$\Rightarrow \frac{1}{\beta f} \frac{df}{dt} = \frac{1}{8} \frac{d^2g}{dz^2} = -\lambda^2 \text{ (const. to be det.)}$$

$$f = -\lambda^2 \beta f$$
 const. of integ

$$\Rightarrow df = -\lambda^2 \beta dt \Rightarrow \ln f/f = -\lambda^2 \beta t$$

$$\frac{df}{dt} = -\lambda^{2}\beta f$$
const. of integr.
$$\Rightarrow \frac{df}{dt} = -\lambda^{2}\beta dt \Rightarrow \ln f/f, = -\lambda^{2}\beta t$$

$$\Rightarrow f = f_{0}e^{-\lambda^{2}\beta t} \text{ or } f(t) \in e^{2}e^{-\lambda^{2}\beta t} e^{-\lambda^{2}\beta t}$$

$$\frac{5pace:}{d^2g} = -\lambda^2g$$

$$\Rightarrow g = A \sin \lambda z + B \cos \lambda z$$

$$At z = 0, g = A \sin \lambda z$$

$$\Rightarrow At z = a,$$

$$\Rightarrow f = A \sin \lambda a$$

$$g' = A \cos \lambda a$$

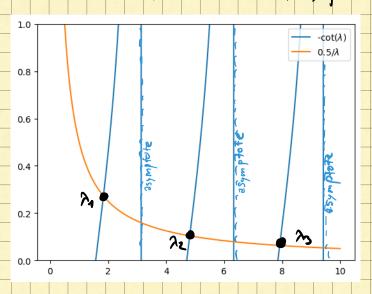
$$\Rightarrow f = -\alpha g$$

$$\Rightarrow A \cos \lambda a = -\alpha A \sin \lambda a$$

$$\Rightarrow -\cot \lambda a = \alpha$$

$$\Rightarrow -\cot \lambda a = \alpha$$

This is a trascendental equation for λ . Solving it is equivalent to finding the intersections between $-\cot \lambda a$ and cc/λ . For example, for a=1, cc=0.5:



:. T(
$$t_1$$
=) = T₀ Q<sup>- $\lambda^2 \beta$ t sin (λ_1 (a,c) z)

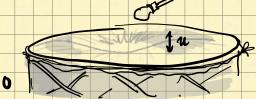
determined by initial conditions (not given in the problem).</sup>

Problem: consider a circular membrane (like the one in a drum) of radius r = 1. The vertical displacement of any point of the membrane v(t,r,q) follows the wave differential equation

$$\nabla^2 \upsilon(t,r,\varphi) = \frac{1}{c^2} \frac{2^2}{2t^2} \upsilon(t,r,\varphi)$$

Solve for **U** with the following boundary conditions:

- The membrane is held in its place at the external boundary, i.e., $\upsilon(t, \gamma=1, \phi) = 0$
- The initial solution is the least oscillatory possible



First, we take the wave equation and separate the time variable from the spatial part

• Time:
$$T'' + \kappa^2 C^2 T = 0$$

$$\Rightarrow T(t) \in \frac{1}{2} \cos(\kappa vt + \infty)^{\frac{3}{2}}$$

· Space:

$$\nabla^2 F + K^2 F = 0$$

the separation of variables (time-space) has given us the Helmholtz differential equation.

Now we do another separation of variables by writing the differential operator in cylindrical coordinates (=polar in this case because it's only in rand p

$$F(r, \varphi) = R(r) \Phi(\varphi)$$

$$\frac{1}{r^2} \frac{3}{r^2} (r \frac{\partial R}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + K^2 = 0 \quad | \cdot r^2 \rangle$$

$$\frac{r}{r^2} \frac{3}{r^2} (r \frac{\partial R}{\partial r}) + K^2 r^2 = \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \varphi^2} - \frac{1}{r^2} \frac{\partial r}{\partial \varphi^2} + \frac{1}{r^2} \frac{$$

$$\frac{R}{r} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + (\kappa^2 r^2 - n^2) R = 0$$

 $\Phi \in \frac{3}{5} \sin(n \varphi)$ cos($n \varphi$) ?

• least oxillatory
$$\Rightarrow$$
 $n = 0$.

 $\Rightarrow \Phi \in \{1,3\}$
• Boundary condition: at $t = 1$, $U = 0 \Rightarrow R(1) = 0$.

 $\Rightarrow J_0(K) = 0$
 $\Rightarrow K = C_{0m}$, $m \in \mathbb{N}$.

 $\Rightarrow K = C_{0m}$, $m \in \mathbb{N}$.

The least oxillatory mode is $m = 1$.

 $\therefore U(t, r, \varphi) = A T(t) R(r) \Phi(\varphi)$

$$U(t,r,\varphi) = A^{\prime} T(t) R(r) \Phi(\varphi)$$

$$= A \cos(G_1 v_t + \infty) T_0(C_{01} r)$$

As an additional initial condition, imagine we say at t = 0, the drum was hit by a stick (see drawing at the beginning of the exercise) and the membrane was deformed downwards following the Bessel function and the maximum displacement was 0.3. Then, the solution for the least oscillatory mode is

at
$$t=0$$
, $v(t=0, r, \varphi) = A cos(co) Jo(co1.0)$

we choose $c=0$

$$A = -0.3$$

$$v(t, r, \varphi) = -0.3 cos(co1 vt) Jo(co1 r)$$
with $co1 = scipy. special.jn_zeros(9.1) ≈ 2.405$