
 
 
 
 
Problem. The vertical displacement 	 of a string when a wave is propagating through it is described by the equation 
 
 
 
where 	 is the horizontal position of the points belonging to the string, 	 			    is time and        is the propagation speed. 
a) Verify that 	 	 	 and	 	 	 are solutions to the wave PDE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) Express	 	 in terms of the initial conditions 
 
	 The general solution is 
 
 
	 therefore, at 		 we have 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) Find the general form of the wave solution for the initial condition 
(this is an example of an initial condition onto a hyperbolic PDE in Cartesian coordinates) 
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Interpretation: for a string with an initial disturbance	  	 (the actual shape doesn't matter), 1/2 of the 
produced wave propagates forwards (+x) and 1/2 propagates backwards (–x). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notice that to solve this second-order PDE we need two initial conditions (velocity 
and position, although the initial position is a free function in this general problem, we still need it for 
a concrete problem). Note that the fact that the functions are expressed as a function of 
means that this problem can be solved by the method of characteristics, with the characteristic speed  
 
 
Problem. A string of variable density        held at a variable tension       satisfies the PDE 
 
 
show that this equation is separable. This is an example of a hyperbolic PDE in Cartesian coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem: solve the wave equation using separable variables for a constant propagation speed for a string held fixed 
at	                               This is a hyperbolic PDE in Cartesian coordinates with Dirichlet boundary conditions. 
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Problem: consider a cylindrical pipe of radius     which allows a hot machine located at the bottom of the pipe                    
to diffuse heat through it and cool down to the outside temperature of	 	 . The temperature within the pipe can be modeled 
using the Laplace equation 
 
 
 
 
and the boundary conditions 
Find the solution for the temperature inside the pipe in the stationary state (no time dependence). 
 
This is an example of an elliptical PDE in cylindrical coordinates under Dirichlet boundary conditions. 
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Problem: the electrical potential can be computed with the Laplace equation 
in spherical coordinates 
 
 
 
 
Find all the base functions that form the general solution and compare against the simplest case of a point charge 
 
This is an example of an elliptical PDE in spherical coordinates. 
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Problem: consider the diffusion equation 
 
 
describing the time-dependent heat transfer within a medium, where      is a constant. 
Solve the equation with the boundary conditions 
 
(Dirichlet boundary condition)	 	 	 	 	                            which means constant temperature of 0 at 
 
 
(Neumann boundary condition)	 	 	 	 	 	 	       which means black-body radiation at  
 
This is an example of a parabolic PDE in Cartesian coordinates under Cauchy boundary conditions. 
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Problem: consider a circular membrane (like the one in a drum) of radius 	 		     . The vertical displacement of any point of 
the membrane 	 	 follows the wave differential equation 
 
 
Solve for        with the following boundary conditions: 
• The membrane is held in its place at the external boundary, i.e., 
• The initial solution is the least oscillatory possible 
 
 
First, we take the wave equation and separate the time variable from the spatial part 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the separation of variables (time-space) has given us the Helmholtz differential equation. 
Now we do another separation of variables by writing the differential operator in cylindrical 
coordinates (=polar in this case because it's only in    and        ) 
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As an additional initial condition, imagine we say at t = 0, the drum was hit by a stick (see drawing at the 
beginning of the exercise) and the membrane was deformed downwards following the Bessel function and 
the maximum displacement was 0.3. Then, the solution for the least oscillatory mode is 

Leastoscillatory D 0

Ie 313 RCD Jolkr
Boundary condition at 1 1 U D R 1 0

Jo K O

K
coi.si n it moaeism 1

UCt r g
ATIÜRCHE9

AcoscoVt a Jo Cont

at to UH0 r 4 A cos a

Jeffwechoose 10.3
i Uct r 9 0.3Cos Cont Jo cont

with Con scipy.special.in_zeros 0 1 2.405


