import numpy as np
from scipy.special import jv, jn_zeros
import matplotlib.pyplot as plt
Applications of Bessel functions¶
Documentation of each function¶
jv?
Signature: jv(*args, **kwargs) Type: ufunc String form: <ufunc 'jv'> File: ~/.venv/default/lib/python3.12/site-packages/numpy/__init__.py Docstring: jv(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature]) jv(v, z, out=None) Bessel function of the first kind of real order and complex argument. Parameters ---------- v : array_like Order (float). z : array_like Argument (float or complex). out : ndarray, optional Optional output array for the function values Returns ------- J : scalar or ndarray Value of the Bessel function, :math:`J_v(z)`. See Also -------- jve : :math:`J_v` with leading exponential behavior stripped off. spherical_jn : spherical Bessel functions. j0 : faster version of this function for order 0. j1 : faster version of this function for order 1. Notes ----- For positive `v` values, the computation is carried out using the AMOS [1]_ `zbesj` routine, which exploits the connection to the modified Bessel function :math:`I_v`, .. math:: J_v(z) = \exp(v\pi\imath/2) I_v(-\imath z)\qquad (\Im z > 0) J_v(z) = \exp(-v\pi\imath/2) I_v(\imath z)\qquad (\Im z < 0) For negative `v` values the formula, .. math:: J_{-v}(z) = J_v(z) \cos(\pi v) - Y_v(z) \sin(\pi v) is used, where :math:`Y_v(z)` is the Bessel function of the second kind, computed using the AMOS routine `zbesy`. Note that the second term is exactly zero for integer `v`; to improve accuracy the second term is explicitly omitted for `v` values such that `v = floor(v)`. Not to be confused with the spherical Bessel functions (see `spherical_jn`). References ---------- .. [1] Donald E. Amos, "AMOS, A Portable Package for Bessel Functions of a Complex Argument and Nonnegative Order", http://netlib.org/amos/ Examples -------- Evaluate the function of order 0 at one point. >>> from scipy.special import jv >>> jv(0, 1.) 0.7651976865579666 Evaluate the function at one point for different orders. >>> jv(0, 1.), jv(1, 1.), jv(1.5, 1.) (0.7651976865579666, 0.44005058574493355, 0.24029783912342725) The evaluation for different orders can be carried out in one call by providing a list or NumPy array as argument for the `v` parameter: >>> jv([0, 1, 1.5], 1.) array([0.76519769, 0.44005059, 0.24029784]) Evaluate the function at several points for order 0 by providing an array for `z`. >>> import numpy as np >>> points = np.array([-2., 0., 3.]) >>> jv(0, points) array([ 0.22389078, 1. , -0.26005195]) If `z` is an array, the order parameter `v` must be broadcastable to the correct shape if different orders shall be computed in one call. To calculate the orders 0 and 1 for an 1D array: >>> orders = np.array([[0], [1]]) >>> orders.shape (2, 1) >>> jv(orders, points) array([[ 0.22389078, 1. , -0.26005195], [-0.57672481, 0. , 0.33905896]]) Plot the functions of order 0 to 3 from -10 to 10. >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots() >>> x = np.linspace(-10., 10., 1000) >>> for i in range(4): ... ax.plot(x, jv(i, x), label=f'$J_{i!r}$') >>> ax.legend() >>> plt.show() Class docstring: Functions that operate element by element on whole arrays. To see the documentation for a specific ufunc, use `info`. For example, ``np.info(np.sin)``. Because ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility, Python's help() function finds this page whenever help() is called on a ufunc. A detailed explanation of ufuncs can be found in the docs for :ref:`ufuncs`. **Calling ufuncs:** ``op(*x[, out], where=True, **kwargs)`` Apply `op` to the arguments `*x` elementwise, broadcasting the arguments. The broadcasting rules are: * Dimensions of length 1 may be prepended to either array. * Arrays may be repeated along dimensions of length 1. Parameters ---------- *x : array_like Input arrays. out : ndarray, None, or tuple of ndarray and None, optional Alternate array object(s) in which to put the result; if provided, it must have a shape that the inputs broadcast to. A tuple of arrays (possible only as a keyword argument) must have length equal to the number of outputs; use None for uninitialized outputs to be allocated by the ufunc. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`. Returns ------- r : ndarray or tuple of ndarray `r` will have the shape that the arrays in `x` broadcast to; if `out` is provided, it will be returned. If not, `r` will be allocated and may contain uninitialized values. If the function has more than one output, then the result will be a tuple of arrays.
jn_zeros?
Signature: jn_zeros(n, nt) Docstring: Compute zeros of integer-order Bessel functions Jn. Compute `nt` zeros of the Bessel functions :math:`J_n(x)` on the interval :math:`(0, \infty)`. The zeros are returned in ascending order. Note that this interval excludes the zero at :math:`x = 0` that exists for :math:`n > 0`. Parameters ---------- n : int Order of Bessel function nt : int Number of zeros to return Returns ------- ndarray First `nt` zeros of the Bessel function. See Also -------- jv: Real-order Bessel functions of the first kind jnp_zeros: Zeros of :math:`Jn'` References ---------- .. [1] Zhang, Shanjie and Jin, Jianming. "Computation of Special Functions", John Wiley and Sons, 1996, chapter 5. https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html Examples -------- Compute the first four positive roots of :math:`J_3`. >>> from scipy.special import jn_zeros >>> jn_zeros(3, 4) array([ 6.3801619 , 9.76102313, 13.01520072, 16.22346616]) Plot :math:`J_3` and its first four positive roots. Note that the root located at 0 is not returned by `jn_zeros`. >>> import numpy as np >>> import matplotlib.pyplot as plt >>> from scipy.special import jn, jn_zeros >>> j3_roots = jn_zeros(3, 4) >>> xmax = 18 >>> xmin = -1 >>> x = np.linspace(xmin, xmax, 500) >>> fig, ax = plt.subplots() >>> ax.plot(x, jn(3, x), label=r'$J_3$') >>> ax.scatter(j3_roots, np.zeros((4, )), s=30, c='r', ... label=r"$J_3$_Zeros", zorder=5) >>> ax.scatter(0, 0, s=30, c='k', ... label=r"Root at 0", zorder=5) >>> ax.hlines(0, 0, xmax, color='k') >>> ax.set_xlim(xmin, xmax) >>> plt.legend() >>> plt.show() File: ~/.venv/default/lib/python3.12/site-packages/scipy/special/_basic.py Type: function
Plots¶
x = np.linspace(0,20,100)
plt.plot(x,jv(0,x),label="J_0(x)")
plt.plot(x,jv(1,x),label="J_1(x)")
plt.plot(x,jv(2,x),label="J_2(x)")
plt.plot(x,jv(1/2,x),label="J$_{1/2}$(x)")
plt.plot(x,jv(3/2,x),label="J$_{3/2}$(x)")
plt.plot(x,jv(5/2,x),label="J$_{5/2}$(x)")
plt.legend()
<matplotlib.legend.Legend at 0x10e6cf560>
Example: Fraunhofer diffraction integral¶
(from Arfken) We need to solve the integral
$$\Phi = \int_0^a r dr \int_0^{2\pi} e^{ibr\cos\theta} d\theta$$
We know the integral representation $$J_0(x) = \frac{1}{2\pi}\int_0^{2\pi} e^{ix\cos\theta} d\theta$$
and a recurrence formula
$$ \frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x) $$
The integral on $\theta$ on $\Phi$ reduces to $2\pi J_0(br)$. Therefore, we need to integrate $\Phi = 2\pi \int_0^a J_0(br) r dr$. This can be done with the recurrence formula.
wavelength_green = 5.5e-5 #cm
aperture = 0.5 # cm
alpha = np.linspace(0,np.pi/10000,100) # small angles
b = 2*np.pi/wavelength_green * np.sin(alpha)
a = aperture
r = np.linspace(0,a,1000)
dr = np.diff(r)[0]
Analytical integration, numerical evaluation
Phi = 2*np.pi*a/b * jv(1,a*b)
plt.plot(alpha,Phi,label=r"$\Phi$")
plt.plot(alpha,Phi**2,label=r"$\Phi^2$")
plt.legend()
/var/folders/2m/tgbjydr93_9_19gzzmp_v_3w0000gn/T/ipykernel_52857/1956156308.py:1: RuntimeWarning: divide by zero encountered in divide Phi = 2*np.pi*a/b * jv(1,a*b) /var/folders/2m/tgbjydr93_9_19gzzmp_v_3w0000gn/T/ipykernel_52857/1956156308.py:1: RuntimeWarning: invalid value encountered in multiply Phi = 2*np.pi*a/b * jv(1,a*b)
<matplotlib.legend.Legend at 0x10e877500>
Example: zeros of the Bessel function¶
(From Arfken) We need to solve the Bessel differential equation (that comes out in a problem of standing electromagnetic waves in a hollow metallic cylinder). The solution is $J_{m}(n\rho)$, with $n$ being a constant, $m \in \mathbb N_0$ and $\rho$ is the variable. The boundary conditions at $\rho = a$ requires $J_m(na) = 0$. Evaluate numerically the zeros of the Bessel function.
m = 0
# zeros of the Bessel function. Careful! In the scipy documentation, m <-> n
zeros = jn_zeros(m,6)
zeros
array([ 2.40482556, 5.52007811, 8.65372791, 11.79153444, 14.93091771, 18.07106397])
If $n\in \mathbb R$, both $\rho$ and $a$ are free. However, if $n\in \mathbb Z$, this fixes the values that $a$ can have to satisfy the Bessel equation. For example, let's take n = 2.
n = 2 # effect: scales rho
rho = np.linspace(0,10,1000) # in the electromagnetism problem, this is the cylindrical radial coordinate
Let's plot the situation
# plot of the Bessel function
plt.plot(rho,jv(m,n*rho))
# plot of the zeros
plt.scatter(zeros/n,zeros*0)
<matplotlib.collections.PathCollection at 0x10e83baa0>
So, $a$ can have the values
zeros/n
array([1.20241278, 2.76003906, 4.32686396, 5.89576722, 7.46545885, 9.03553198])
This is analogous to the problem of a standing wave on a rope. Given the (spatial) harmonic oscillator equation (i.e., the spatial wave equation) and an angular frequency (which is the same role that $m$ plays here in the Bessel equation, but careful, the Bessel functions have no frequency despite having an oscillatory behavior), only ropes of a certain length can accommodate a given standing wave (i.e., only certain lengths satisfy the boundary conditions).