
Radiative transfer 
Blackbody radiation: Planck's law: the energy density  for the frequency  (formally, the 

frequency range, ) is  

Specific intensity. The energy of  a given frequency coming from a solid 
angle  and inciding over an area  (projected perpendicularly to it) in 
a time  is , where  is the specific 
intensity. 

Radiation flux for a frequency :  (power that crosses an 

area from all directions). The total flux for all frequencies is . 

Uniformly radiating sphere: consider a sphere of  
radius  that radiates with uniform intensity . 
z-axis along . The flux that an observer located at  receives is 

, 

but since , . Observe that the term  is the solid 
angle subtended by the sphere at P (both making the star bigger or closer have the same effect). 

Energy density: energy  that passes through a cylinder of  base  and height : 
  ; if  isotropic,  

Radiation pressure. Radiation has momentum . 
. The pressure 

counting all directions is ; if  isotropic, . Comparing with 

the isotropic energy density, . 

Radiative transfer in empty space: the radiation going through 2 due to 1 is 
, and, by symmetry, the radiation that 1 receives due to 2 is 

. But the energy is conserved, and , so, , which 
implies that, along the ray path,  in empty space. Conclusion: the specific intensity 

does not depend on distance, so it's a measure of  surface brightness (total  but the angular 
size also is , so the effects cancel out). 
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Radiative transfer equation: in the presence of  matter, . If  matter emits, it sums  

(emission coefficient, units of  intensity/length). If  matter absorbs, it will diminish the intensity, so 
one subtracts an amount proportional to ;  is the absorption coefficient. 

Optical depth: if  we consider absorption only,  . Integrating in 

a path, we get . We define the integral in the rhs as the optical depth 

. Then, the solution for only absorption is . If  the optical depth is , the 
intensity at the beginning is almost the same as at the end  the medium is optically thin or 
transparent. If  the optical depth is , the final intensity is about zero  the medium is 
optically thick or opaque. 

Source function: we define . We can have the radiative transfer equation in terms of  
: . This differential equation can be solved by using an 

integrating factor :  ; we integrate from  in the ray path, which 

corresponds to , yielding .   is the boundary 

condition and can be fixed by including incoming radiation.  is the intensity emerging from 
the medium to the observer; the first term is absorption along the ray, and the second term is the 
sum of  the contributions of  all sources along the ray. 

Limiting cases: for constant coefficients and no incoming radiation, . If  the 
object is optically thin, ,  , with , being  the length of  the material

. If  the object is optically thick,  . 

Kirchhoff's law: when matter is in thermodynamic equilibrium, all that is emitted must be 
absorbed. That means that , but since  for equilibrium, 

.
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