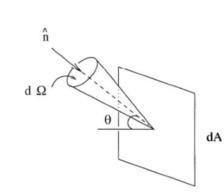
Radiative transfer

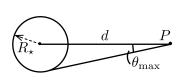
Radiative transfer

Blackbody radiation: Planck's law: the energy density
$$U_{\nu}$$
 for the frequency ν (formally, the frequency range, $\nu, \nu + d\nu$) is $U_{\nu} d\nu = \frac{8\pi h}{c^3} \frac{\nu^3 d\nu}{\exp\left[h\nu/(k_BT)\right] - 1} := \frac{4\pi}{c} B_{\nu}(T)$

Specific intensity. The energy of a given frequency coming from a solid angle $d\Omega$ and inciding over an area dA (projected perpendicularly to it) in a time dt is $dE_{\nu}d\nu = I_{\nu}(\vec{\mathbf{r}},t,\hat{\mathbf{n}})\cos\theta \,dA\,dt\,d\Omega\,d\nu$, where I_{ν} is the specific intensity.

Radiation flux for a frequency ν : $F_{\nu} = \int I_{\nu} \cos \theta d\Omega$ (power that crosses an area from all directions). The total flux for all frequencies is $F = \int F_{\nu} d\nu$.





Uniformly radiating sphere: consider a sphere of

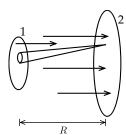
radius
$$R_{\star}$$
 that radiates with uniform intensity I_0 .
z-axis along d . The flux that an observer located at P receives is
$$F = \int I \cos \theta d\Omega = I_0 \int_0^{2\pi} d\phi \int_0^{\theta \max} \cos \theta \sin \theta d\theta = I_0 \cdot \frac{1}{2} \sin^2 \theta_{\max} \cdot 2\pi,$$

but since $\sin \theta_{\text{max}} = R_{\star}/d$, $\implies F = I_0 \pi (R_{\star}/d)^2$. Observe that the term $\pi (R_{\star}/d)^2$ is the solid angle subtended by the sphere at P (both making the star bigger or closer have the same effect).

$$\frac{\textit{Energy density}: \text{ energy } dE_{\nu} \text{ that passes through a cylinder of base } dA \text{ and height } cdt:}{\frac{dE_{\nu}}{\cos\theta dA \ cdt}} = \frac{I_{\nu}}{c} d\Omega \implies U_{\nu} = \int \frac{I_{\nu}}{c} d\Omega \text{ ; if isotropic, } U_{\nu} = \frac{4\pi}{c} I_{\nu}$$

Radiation pressure. Radiation has momentum
$$dE_{\nu}/c$$
. pressure $=\frac{\text{force}_{\perp}}{dA}=\frac{\text{momentum}}{dtdA}=\frac{dE_{\nu}\cos\theta}{c}\frac{1}{dAdt}=\frac{I_{\nu}}{c}\cos^{2}\theta d\Omega$. The pressure counting all directions is $P_{\nu}=\frac{1}{c}\int I_{\nu}\cos^{2}\theta d\Omega$; if isotropic, $P_{\nu}=\frac{4\pi}{3}\frac{I_{\nu}}{c}$. Comparing with

the isotropic energy density, $P_{\nu} = \frac{1}{3}U_{\nu}$.



Radiative transfer in empty space: the radiation going through 2 due to 1 is $I_{\nu 2}dA_2dtd\Omega_2d\nu$, and, by symmetry, the radiation that 1 receives due to 2 is $I_{\nu 1}dA_1dtd\Omega_1d\nu$. But the energy is conserved, and $d\Omega=dA/R^2$, so, $I_{\nu 1}=I_{\nu 2}$, which implies that, along the ray path, $\frac{dI_{\nu}}{ds} = 0$ in empty space. *Conclusion*: the specific intensity does not depend on distance, so it's a measure of surface brightness (total $I \propto r^{-2}$ but the angular size also is $\propto r^{-2}$, so the effects cancel out).

Radiative transfer equation: in the presence of matter, $\frac{dI_{\nu}}{ds} = j_{\nu} - \alpha_{\nu}I_{\nu}$. If matter emits, it sums j_{ν} (emission coefficient, units of intensity/length). If matter absorbs, it will diminish the intensity, so one subtracts an amount proportional to I_{ν} ; α_{ν} is the absorption coefficient.

Optical depth: if we consider absorption only, $dI_{\nu}/ds = -\alpha_{\nu}I_{\nu} \implies dI_{\nu}/I_{\nu} = \alpha_{\nu}ds$. Integrating in a path, we get $\ln\left[\frac{I_{\nu}(s)}{I_{\nu}(s_0)}\right] = -\int_{s_0}^s \alpha_{\nu}(s')ds'$. We define the integral in the rhs as the optical depth τ_{ν} . Then, the solution for only absorption is $I_{\nu}(s) = I_{\nu}(s_0)e^{-\tau_{\nu}}$. If the optical depth is $\ll 1$, the intensity at the beginning is almost the same as at the end \Longrightarrow the medium is optically thin or transparent. If the optical depth is $\gg 1$, the final intensity is about zero \Longrightarrow the medium is optically thick or opaque.

Source function: we define $S_{\nu} := j_{\nu}/\alpha_{\nu}$. We can have the radiative transfer equation in terms of S_{ν} , τ_{ν} : $\frac{1}{\alpha_{\nu}} \frac{dI_{\nu}}{ds} = \frac{j_{\nu}}{\alpha_{\nu}} - I_{\nu} \Longrightarrow \frac{dI_{\nu}}{d\tau_{\nu}} = S_{\nu} + I_{\nu}$. This differential equation can be solved by using an integrating factor $e^{\tau_{\nu}}$: $\frac{d}{dt}(I_{\nu}e^{\tau_{\nu}}) = S_{\nu}e^{\tau}_{\nu}$; we integrate from $s_0 < s' < s$ in the ray path, which corresponds to $0 < \tau'_{\nu} < \tau_{\nu}$, yielding $I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau'_{\nu})}S_{\nu}(\tau'_{\nu})d\tau'_{\nu}$. $I_{\nu}(0)$ is the boundary condition and can be fixed by including incoming radiation. $I_{\nu}(\tau_{\nu})$ is the intensity emerging from the medium to the observer; the first term is absorption along the ray, and the second term is the sum of the contributions of all sources along the ray.

Limiting cases: for constant coefficients and no incoming radiation, $I_{\nu}(\tau_{\nu}) = S_{\nu}(1 - e^{-\tau_{\nu}})$. If the object is optically thin, $\tau_{\nu} \ll 1$, $e^{-\tau_{\nu}} \approx 1 - \tau_{\nu}$, with $\tau_{\nu} = \alpha_{\nu}L$, being L the length of the material $\implies I_{\nu} = j_{\nu}L$. If the object is optically thick, $\tau_{\nu} \gg 1 \implies I_{\nu} = S_{\nu}$.

Kirchhoff's law: when matter is in thermodynamic equilibrium, all that is emitted must be absorbed. That means that $j_{\nu} = \alpha_{\nu} I_{\nu}$, but since $I_{\nu} = B_{\nu}$ for equilibrium, $S_{\nu} = j_{\nu}/\alpha_{\nu} = \alpha_{\nu} I_{\nu}/\alpha_{\nu} = B_{\nu}(T)$.