Notes on

Radiative transter

Radiative transfer

Blackbody radiation: Planck's law: the energy density U, for the frequency v (formally, the
8rh vidv 4n

frequency range, v,v +dv)is U,dv = :=—B/(T)
neneyrans ) ¢ exp|hvltkgT)| -1 ¢

Specific intensity. The energy of a given frequency coming from a solid
angle dQ and inciding over an area d A (projected perpendicularly to it) in n
atime drisdE,dv = L(F,1,fi)cos @ dA dt dQ dv, where [ is the specific

intensity.
Radiation flux for a_frequency v: F, = le cos 0dQ (power that crosses an

area from all directions). The total flux for all frequencies is F = JF Ldu.

Uniformly radiating sphere: consider a sphere of
radius R, that radiates with uniform intensity I,.
z-axis along d. The flux that an observer located at P receives is

2r Omax 1
F = chos 0dQ = IOJ d(j)J cos@sin0dl =1, - ) sin” O ax - 27,

0 0
but since sin Oyax = R, /d, => F = I,n(R,/d)?. Observe that the term z (R, /d)? is the solid

angle subtended by the sphere at P (both making the star bigger or closer have the same effect).

Energy density: energy d E, that passes through a cylinder of base d A and height cdt:

dE, I L .. , 4
— =—dQ = U, = [—dQ ; if 1sotropic, U, = —1,
cosfdA cdt ¢ c c

Radiation fpressure. Radiation has momentum dE, /c.
orce;, momentum dE, cosf 1

I
= =~ cos? 0dQ. The pressure
dA dtdA c dAdt ¢

. o . o . 4r 1, . .
counting all directions 1s P, = — le cos? 0dQ; if isotropic, P, = ?—”. Comparing with
c c

pressure =

the isotropic energy density, P, = EU”'

Radiatwe transfer in empty space: the radiation going through 2 due to 1 is
1,dA,dtdQ,dv, and, by symmetry, the radiation that | receives due to 2 is

. . L —

1,,dA,dtdQ,dv. But the energy is conserved, and dQ = dA/R?, so, I, = 1,,, which

implies that, along the ray path, d—; = 0 in empty space. Conclusion: the specific intensity

does not depend on distance, so it's a measure of surface brightness (total I o =2 but the angular
size also is o« r~2, so the effects cancel out).



- o dl, .
Radiatie transfer equation: in the presence of matter, d—: =j,— a,L,. If matter emits, it sums j,

(emission coeflicient, units of intensity/length). If matter absorbs, it will diminish the intensity, so
one subtracts an amount proportional to I; a, is the absorption coefficient.

Optical depth: if we consider absorption only, dI, /ds = —a,l, = dI /1, = a,ds. Integrating in

L(s y
I”(( )) == J a,(s")ds'. We define the integral in the rhs as the optical depth
v SO S0

7,. Then, the solution for only absorption is 1,(s) = I,(sy)e” . If the optical depth 1s <« 1, the
intensity at the beginning is almost the same as at the end = the medium 1s optically thin or
transparent. If the optical depth is > 1, the final intensity is about zero = the medium is
optically thick or opaque.

a path, we get In

Source function: we define S, := j, /a,. We can have the radiative transfer equation in terms of
1dl, j,

v

S,. 7,

L = S, + 1. This differential equation can be solved by using an

a, ds « T
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integrating factor e™: d—(IDe’V) = §,e; ; we integrate from s, < s’ < s in the ray path, which
t

v
corresponds to 0 < 7, < 7,, yielding /,(z,) = I, (0)e™™ + J e~ =S (¢)d7). 1(0)is the boundary
0
condition and can be fixed by including incoming radiation. /,(z,) is the intensity emerging from

the medium to the observer; the first term is absorption along the ray, and the second term is the
sum of the contributions of all sources along the ray.

Limuting cases: for constant coefficients and no incoming radiation, /,(z,) = S,(1 — e~%). If the
object is optically thin, 7, < 1, e™" ~ 1 — 7, with 7, = a, L, being L the length of the material
= [, =j, L. If the object is optically thick, 7, > 1 = [, =,.

Kurchhoff's law: when matter is in thermodynamic equilibrium, all that i1s emitted must be
absorbed. That means that j, = a,1,, but since I, = B, for equilibrium,
S, =jla,=a,l,la,=B/(T).
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